\$N-Protractor: A Fast and Accurate Multistroke Recognizer

Lisa Anthony
Information Systems
UMBC
Ianthony@umbc.edu

Jacob O. Wobbrock
Information School | DUB Group
University of Washington
wobbrock@uw.edu

Pen and Finger Gesture Input

My Word Coach (DS)

Obenkyo (Android)

Mr. Spiff's Revenge (PC)

Pen and Finger Gesture Input

Gesture recognition for new platforms requires rapid prototyping but existing approaches are complex.

\$1 is a simple, accurate recognizer to address this challenge for unistrokes.

- "one dollar" = cheap, fast, easy.
- [Wobbrock et al, UIST 2007]

\$N Multistroke Gesture Recognizer

\$N extends \$1 from unistroke to multistroke

- Include pen-up periods
- Recognize based on the entire path the arm takes in the air above the surface

Template matcher: point per point correspondence (like \$1)

[Anthony & Wobbrock, GI 2010]

Pre-processing and matching for \$N and \$1

Open Source and Easy to Adapt

Open-source (C#, Java, more...)

- Rapid pick-up by community
- AlphaCount iPhone app
- iOS port of the recognizer

~100 lines of pseudo-code

Supports independent app development

AlphaCount (iOS)

Space and Time Constraints

Space and Time Constraints

\$N represents and tests all possible **permutations** of a given gesture (e.g., 8 ways to make an "x")

- Easier for the user not to define them all
- Very costly in space and time for the system

Multi-stroke representation of an "x"

Space and Time Constraints

\$N uses **GSS** to find the best alignment between two gestures

- Rotation-invariant, tolerant to small variations
- All pairwise comparisons
- Iterative, time-consuming

Approximation of Golden Section Search through a space

Optimal Alignment with Protractor

Protractor is a closed-form method to find best alignment for \$1

- Approx. 80% time savings (for 16 gestures when 9 templates loaded)
- [Li, CHI 2010]
- http://yangl.org/protractor/ protractor.pdf

Protractor's closed-form alignment [Li, CHI 2010]

Evaluating \$N-Protractor

Added Protractor matching method to \$N to replace GSS

Protractor is essentially \$1 with a different matching method

Cut out one source of time complexity in \$N (iterative alignment search)

Permutations cost remains

\$N-GSS: $[(x_1, y_1), (x_2, y_2), (x_n, y_n)]$

\$N-Protractor: $[x_1, y_1, x_2, y_2, ... x_n, y_n]$

Internal representations

Gesture Corpora Tested

Algebra Corpus

- 40 middle and high school students
- Unconstrained math symbols
- [Anthony et al, AIEd 2007]

\$1 Unistroke Corpus

- 10 able-bodied adults
- Gesture and UI oriented symbols (1 stroke only)
- [Wobbrock et al, UIST 2007]

Mixed Multistroke Corpus

- 10 able-bodied adults
- Gesture and UI oriented symbols (1-3 strokes)

MMG Corpus

Recognition Accuracy

Recognition accuracy with Protractor vs. GSS for different corpora

- GSS and Protractor methods minimally different recognition accuracy
- Algebra dataset still most challenging for \$N-family
- Unistrokes easiest

Recognition Speed

Time per recognition with Protractor vs. GSS for different corpora

- GSS consistently slower than Protractor on all datasets
- MMG: Protractor is more than 10x faster than GSS
- Benefits of Protractor magnified for multistrokes
- (More data was available for Algebra dataset)

Impact of Input Method and Speed

Accuracy w/ Finger vs Stylus Input

- Just for \$N-Protractor
- Gestures entered via finger more accurate than stylus
- No difference due to input speed

Most Confusable Gestures

Tested gesture	Confused gesture	No. of confusions	% tests confused
Exclamation point	Half note	2488	4.6%
Line	[no result]	1466	2.7%
Exclamation point	N	1162	2.2%
н	N	822	1.5%
Six point star	Null	777	1.4%
Five point star	[no result]	749	1.4%
Exclamation point	Arrow	737	1.4%
Exclamation point	Т	703	1.3%
P	D	608	1.1%
Half note	[no result]	561	1.0%
N	Р	553	1.0%

- No symbol mis-recognized more than 4.6% of the time
- Worst recognized symbol was exclamation point
- Confusable pairs indicate small strokes and 1D gestures most difficult
- No reciprocal confusability relationships

Most confused gesture pairs in MMG corpus

Summary

- √ \$N-Protractor >10x faster than \$N-GSS on MMG.
- √ \$N-Protractor more accurate for finger than stylus gestures.
- ✓ No impact of input speed.
- ✓ \$N-Protractor has trouble with gestures with very small component strokes (e.g., exclamation points) and thin gestures (e.g., lines).

Next Steps

Working on optimizations to reduce number of comparisons and permutations stored.

Coming soon: \$P – a simple, fast and accurate point-cloud approach to gesture recognition!

Questions?

Contact:

- Lisa Anthony, PhD
 - lanthony@umbc.edu
- Jacob O. Wobbrock, PhD
 - wobbrock@uw.edu

Pseudo-code:

http://depts.washington.edu/aimgroup/proj/dollar/ndollar.html

Anthony, L. and Wobbrock, J.O. 2012. \$N-Protractor: A Fast and Accurate Multistroke Recognizer. Proceedings of Graphics Interface (GI'2012), Toronto, Canada.

References

- 1. Anthony, L., Yang, J., and Koedinger, K.R. 2007. Benefits of Handwritten Input for Students Learning Algebra Equation Solving. *Proceedings of the International Conference on Artificial Intelligence and Education (AIEd'2007)*, Los Angeles, CA, 12 Jul 2007, p.521-523.
- 2. L. Anthony and J.O. Wobbrock. A lightweight multistroke recognizer for user interface prototypes. *Proceedings of Graphics Interface '10* (Ottawa, Canada, May 31-June 2, 2010), 245-252. Canadian Information Processing Society, 2010.
- 3. Y. Li. Protractor: a fast and accurate gesture recognizer. *Proceedings of ACM SIGCHI Conference on Human Factors in Computing Systems '10* (Atlanta, Georgia, April 10-15, 2010), 2169-2172. ACM Press, 2010.
- J.O. Wobbrock, A.D. Wilson, and Y. Li. Gestures without libraries, toolkits or training: A \$1 recognizer for user interface prototypes. *Proceedings of ACM Symposium on User Interface Software and Technology '07* (Newport, Rhode Island, October 7-10, 2007), 159-168. ACM Press, 2007.

