Gesture Dynamics: Features Sensitive to Task Difficulty and Correlated with Physiological Sensors

Lisa Anthony, PhD
Patrick Carrington
Peng Chu
Christopher Kidd
Jianwei Lai
Andrew Sears, PhD
1. Inducing stress via task difficulty can affect some multimodal measures for fixed-attention tasks:
 – Gesture duration and length.
 – Pulse rate.

2. Other multimodal measures are not affected by task difficulty for fixed-attention tasks:
 – Gesture size and pen pressure.
 – Skin temperature and respiration rates.

3. Results from this study can be used to detect onset of stress in fixed-attention tasks.
Topics

1. Experiment and Task Design
2. Data Analysis and Results
 - Task Performance
 - Gesture Dynamics
 - Physiological Sensors
3. Recent Work: Machine Learning Classification of Stress
4. Future Work:
 - Cross-Modality Comparisons
 - Events of Interest
1. EXPERIMENT AND TASK DESIGN
Experiment Task: **Non-Stress**
Experiment Task: **Stress**
Experiment Design

Two-factor mixed design:
- **Modality** of response (between-subjects)
- **Stress** / task difficulty (within-subjects)

5 modalities: gesture, speech, typing, mouse, finger tap
- This paper / talk focuses just on **gesture** modality.
- Responses entered by drawing first letter of identifier with digital stylus.
- Automatic recognition of input by Microsoft SDK.
Gesture Input Example

Normal Speed
Sensors Used

Physiological:
- Skin temperature
- Pulse (finger)
- Respiration bands

Posture (chair):
- Distance
- Pressure
Sensors Used

Physiological:
- Skin temperature
- Pulse (finger)
- Respiration bands

Posture (chair):
- Distance
- Pressure
Sensors Used

Physiological:
- Skin temperature
- Pulse (finger)
- Respiration bands

Posture (chair):
- Distance
- Pressure

Tablet PC
2. DATA ANALYSIS
Data Analysis

12 total participants (7 male)

Categories of data:

- **Task performance**—how well users did on the task during non-stress vs stress periods [P = paper, T = talk, F = future work] P
- **Gesture dynamics**—properties of the gestures users made during non-stress vs stress periods P, T
- **Physiological data**—sensor readings P, T, F
- **Posture data**—sensor readings F

Types of analysis:

- **Statistical contrasts** P, T, F
- **Machine learning classification** T, F
“Good” Gesture Dynamics

Gesture duration

<table>
<thead>
<tr>
<th>Gesture Duration (ms)</th>
<th>Non-stress</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gesture # points

<table>
<thead>
<tr>
<th>Number of Points</th>
<th>Non-stress</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gesture length

<table>
<thead>
<tr>
<th>Gesture Length</th>
<th>Non-stress</th>
<th>Stress</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
T_n - T_1 = \text{total time} = \text{duration}
\]

\[
n = \text{total number of points}
\]

\[
\sum D_{i,i+1} = \text{total path distance} = \text{length}
\]
Inconclusive Gesture Dynamics

Marginal:
- Gesture speed

Not significant:
- Gesture height
- Gesture width
- Gesture area
- Gesture average pen pressure
- Gesture per-point pen pressure
“Good” Physiological Sensors

Pulse rate (beats per minute)

Pulse Rate (BPM)

- Non-stress
- Stress
Inconclusive Physio Sensors

Marginal:
- Skin temperature (°F)

Not significant:
- Respiration rate (breaths per minute, at chest and at waist)
Machine Learning Classification of Stress

3. RECENT WORK
Building decision trees to classify readings into “non-stress” vs “stress” classes (Weka toolkit)

<table>
<thead>
<tr>
<th>Data Type</th>
<th>Accuracy</th>
<th>kappa</th>
<th>Best Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesture Dynamics</td>
<td>63.9%</td>
<td>0.28</td>
<td>Best features were number of points in the gesture and length. (Correct gestures only, balanced dataset.)</td>
</tr>
<tr>
<td>Physiological Sensors</td>
<td>98.9%</td>
<td>0.97</td>
<td>Best features were respiration rate chest and abdomen.</td>
</tr>
<tr>
<td>Posture Sensors</td>
<td>84.9%</td>
<td>0.64</td>
<td>Best features were the right-front chair leg and the mid-range distance sensor.</td>
</tr>
</tbody>
</table>

- Reasonable performance
- Need to improve for real-time detection
- Combinations of sensors and more fine-grained time windows
4. FUTURE WORK
Future Work

Cross-modality comparisons

Events of interest (e.g., responses to targets, stress onsets)

New gesture features to compute

Combine features from multiple sensors / sources

Binning sensor readings to decrease noise

Collaborations?

– Goal: to detect onset of cognitive stress and adapt interaction to support user needs

1. Inducing stress via task difficulty can affect some multimodal measures for fixed-attention tasks:
 - Gesture duration and length.
 - Pulse rate.

2. Other multimodal measures are not affected by task difficulty for fixed-attention tasks:
 - Gesture size and pen pressure.
 - Skin temperature and respiration rates.

3. Results from this study can be used to detect onset of stress in fixed-attention tasks.
Questions?

Contact:
- Lisa Anthony, PhD
- lanthony@umbc.edu

Co-Authors:
- Patrick Carrington, Peng Chu, Christopher Kidd, Jianwei Lai
 - UMBC Information Systems
 - {carpat1, pengchu1, kidd1, jianwei1}@umbc.edu
- Andrew Sears, PhD
 - Rochester Institute of Technology
 - andrew.sears@rit.edu

Partial funding: Northrup Grumman